Four New Compounds from Sinacalia tangutica

by Ying Zhu*^a), Yan Zhao^a), Guo-Du Huang^a), and Wang-Suo Wu^b)

 ^a) State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China (phone: +86-931-3698769; fax: +86-931-8912582; e-mail: zhuy@lzu.edu.cn)
 ^b) Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, P. R. China

Four new compounds, 9a-hydroxy-1 β -methoxycaryolanol (1), stigmast-5-ene-7a,22a-diol-3 β -tetradecanoate (2), 7-O-(6'-acetoxy- β -D-glucopyranosyl)coumarin (3), and 8-O-(6'-acetoxy- β -D-glucopyranosyl)-7-hydroxycoumarin (4), together with ten known compounds, were isolated from the aerial parts of *Sinacalia tangutica*. The structures of the new compounds were established by means of extensive spectroscopic analyses (1D- and 2D-NMR, EI-MS, HR-ESI-MS, as well as IR and UV) and by comparison of their spectroscopic data with those of structurally related compounds reported in the literature.

1. Introduction. – The genus *Sinacalia* belongs to the family Compositae and is widely distributed in the West China. It is a Chinese endemic genus and consists of only four species. *Sinacalia tangutica* (MAXIM) has long been used as a folk medicine for expectorant, anti-cough, antihistamine, antiradical and cathartic purposes [1]. Up to now, only the phytochemical constitutes of *S. tangutica* have been studied. A new flavan was isolated from *S. tangutica* distributing in the southeast of Gansu province [2]. Monoterpenes and caryophyllane sesquiterpene were obtained from this plant distributing in the central region of Gansu province [3]. An isopentenyl acetophenon derivative, eremophilane sesquiterpenes, cycloartene triterpenes and coumarins were reported from *S. tangutica* from the east of Qinghai province [4]. From the above information, we found that the chemical constitutes of *S. tangutica* had some regional differences.

Here, we report four new compounds, 9α -hydroxy-1 β -methoxycaryolanol (1), stigmast-5-ene- 7α ,22 α -diol- 3β -tetradecanoate (2), 7-O-(6'-acetoxy- β -D-glucopyranosyl)coumarin (3), and 8-O-(6'-acetoxy- β -D-glucopyranosyl)-7-hydroxycoumarin (4), together with ten known compounds, including a steroid, 5, four coumarins 6-9, and five sesquiterpenes, 10-14, from the aerial parts of *S. tangutica* distributing in the southwest of Gansu province. Among them, compounds 5, 7, and 9-14 were isolated from the title plant for the first time. This further gives evidence that the chemical compositions of plants have a relation with their growth environment.

2. Results and Discussion. – The structures of the known compounds were elucidated by comparing their physical and spectral data with those reported in the literature as 5α , 8α -epidioxy ergosta-6, 22-dien-3 β -ol (5) [5], 7-hydroxy-8-methoxy cou-

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

marin (6) [6], 6-methoxy-7-hydroxycoumarin (7) [7], 7-hydroxycoumarin (8) [6], aurapten (9) [8], $1\alpha,5\beta$ -guaiane- $4\beta,6\beta,10\beta$ -triol (10) [9], chrysothol (11) [9], $1\alpha,10\beta,4\beta,5\alpha$ -diepoxy- $7\alpha H$ -germacran- 6β -ol (12) [10], eremophila-9,11-dien-8-one (13) [11], $1\alpha,4\beta,6\beta$ -trihydroxyeudesmane (14) [12].

Compound **1** was obtained as colorless crystals. The EI-MS showed the molecularion peak at m/z 252, and the molecular formula $C_{16}H_{28}O_2$ was deduced from the pseudomolecular-ion peak at m/z 270.2431 ($[M + NH_4]^+$, $C_{16}H_{32}NO_2^+$; calc. 270.2428)

¹⁾ Arbitrary atom numbering; for systematic names, see Exper. Part.

in the HR-ESI-MS, which indicated three degrees of unsaturation. The IR (film) spectrum showed absorption bands of a OH (3369.5 cm⁻¹) and a MeO group (2853.9 cm⁻¹). The ¹³C-NMR (DEPT) spectra (*Table 1*) gave 16 C-atoms, including three Me, six CH₂, and three CH groups, including one oxymethine group (δ (C) 72.4, d), along with three quaternary C-atoms, including one oxygenated C-atom ($\delta(C)$ 75.3, s), and one MeO group. The signals of the three Me groups, $\delta(C) 30.4(q)$, 26.7(q), and 20.6 (q) were characteristic signals for a caryolane sesquiterpene [13][14]. In the ¹H,¹H-COSY experiment, the key correlations of H–C(2) (δ (H) 2.10–2.14, m) with $H_b-C(3)$ ($\delta(H)$ 1.62–1.66, m) and H-C(5) ($\delta(H)$ 1.88–1.94, m); $H_b-C(6)$ ($\delta(H)$ 1.33-1.37, m with H-C(5) (δ (H) 1.88-1.94, m) and H_a-C(7) (δ (H) 1.10-1.14, m); and $H_a - C(10)$ ($\delta(H)$ 1.76-1.80, m) with H - C(9) ($\delta(H)$ 3.45, dd) and $H_b - C(11)$ $(\delta(H) 1.68 - 1.70, m)$ were observed. These findings further confirmed that 1 has a carvolane sesquiterpene skeleton with each a OH and a MeO substituent. The positions of the MeO and OH groups were determined by the HMBC correlations of MeO ($\delta(H)$) 3.16, s) with C(1) (δ (C) 75.3, s) and Me(15) (δ (H) 0.91, s) and H_b-C(11) (δ (H) 1.68-1.70, m) with C(9) (δ (C) 72.4, d), indicating that the MeO group and the OH group were linked at C(1) and C(9), respectively.

	$\delta(\mathrm{H})$	$\delta(C)$	HMBC ($C \rightarrow H$)
C(1)		75.3 (s)	$Me(15), H_b-C(11), CH_2(12), MeO$
H-C(2)	2.10 - 2.14(m)	38.6(d)	Me(13), Me(14), CH ₂ (11), CH ₂ (12)
$CH_2(3)$	a: $1.50 - 1.58(m)$	27.9(t)	Me(13)
2()	b: $1.62 - 1.66(m)$		
C(4)		35.3(s)	$Me(13), Me(14), H_a - C(3)$
H-C(5)	1.88 - 1.94 (m)	44.7(d)	$Me(13), Me(14), H_a - C(6)$
$CH_2(6)$	a: 1.14-1.18 (m)	20.8(t)	$H_{\rm b}-C(7)$
2()	b: $1.33 - 1.37(m)$		
$CH_2(7)$	a: $1.10 - 1.14$ (m)	35.8(t)	$Me(15), H_{h}-C(12), H_{h}-C(6)$
2()	b: $1.44 - 1.48$ (m)		
C(8)		39.0(s)	$Me(15), CH_2(12), H_b - C(7)$
H-C(9)	3.45 (dd, J = 11.7, 3.6)	72.4(d)	$Me(15), CH_2(12), H_b - C(11)$
CH ₂ (10)	a: 1.76–1.80 (m)	28.0(t)	$H_{a}-C(12), H_{a}-C(11)$
200	b: $2.00 - 2.10$ (m)		a () / a ()
CH ₂ (11)	a: $1.52 - 1.57$ (m)	36.1(t)	$H_{\rm b} - C(12)$
2()	b: $1.68 - 1.70$ (m)		
$CH_{2}(12)$	a: 1.38 $(d, J = 12.3)$	40.3(t)	$Me(15), H_a - C(11), H_b - C(7)$
2()	b: $1.51 (d, J = 12.9)$		
Me(13)	1.00(s)	20.6(q)	$Me(14), H_{b}-C(3)$
Me(14)	0.98(s)	30.4(q)	$Me(14), H_{3}-C(3)$
Me(15)	0.91(s)	26.7(q)	$CH_2(12)$
	3.16(s)	50.1(a)	2()

Table 1. ¹*H*-, ¹³*C*-*NMR* (DEPT)^a), and *HMBC Data of* $\mathbf{1}^1$) (CDCl₃, δ in ppm, *J* in Hz)

The relative configuration of **1** was elucidated by an NOE experiment, in combination with the interpretation of the coupling constants. Irradiation of the Me(15) resulted in enhancements of $H_{b}-C(12)$ at $\delta(H)$ 1.51 (+2.21 %) and H-C(9)

(+1.42%), irradiation of H–C(9) led to enhancements of Me(15) (+2.47%) and H–C(5) (+3.91%), and irradiation of MeO–C(1) resulted in the enhancement of H_b –C(12) at δ (H) 1.51 (+2.77%). Assuming Me(15) to be β -oriented, as in all natural caryolane sesquiterpenes, H–C(9), H–C(5), H_b–C(12), and MeO–C(1) should be β -configured. The coupling constant of H–C(9) (J(9,10a) = 11.7) further confirmed the β -configuration. Accordingly, the structure of **1** was elucidated to be 9α -hydroxy-1 β -methoxycaryolanol¹).

Compound **2** was obtained as colorless villiform crystal. The HR-ESI-MS showed an $[M + Na]^+$ peak at m/z 679.5646 (calc. 679.5636), corresponding to the molecular formula $C_{43}H_{76}O_4$. The IR (film) spectrum showed absorption bands of OH groups (3407.2 cm⁻¹), an ester CO group (1733.4 cm⁻¹), and a C=C bond (1640.1 cm⁻¹). The ¹H-NMR spectrum (*Table 2*) exhibited the six typical Me-group signals of the stigmastane skeleton: two *singlets* at $\delta(H)$ 0.70 and 1.00 (Me(18) and Me(19), resp.), three *doublets* at $\delta(H)$ 0.92, 0.87 and 0.77 (Me(21), Me(26), and Me(27), resp.), and one *triplet* at $\delta(H)$ 0.88 (Me(29)), as well as three oxygenated CH groups: a *multiplet* at $\delta(H)$ 4.63–4.67, a broad *singlet* at $\delta(H)$ 3.84, and a broad *doublet* at $\delta(H)$ 3.70. The ¹³C-NMR (DEPT) spectra (*Table 2*) showed six typical stigmastane skeleton Me groups ($\delta(C)$ 11.6 (q), 18.2 (q), 12.3 (q), 17.5 (q), 20.6 (q), and 11.9 (q)) [15], three oxygenated CH groups ($\delta(C)$ 73.0 (d), 65.2 (d), 71.2 (d)), two olefinic C-atoms ($\delta(C)$

Table 2. ¹*H*- and ¹³*C*-*NMR* (DEPT) *Data*^a) of 2^1) (CDCl₃, δ in ppm, *J* in Hz)

$\begin{array}{l} 12 - 1.16 \ (m) \\ .82 - 1.89 \ (m) \\ .52 - 1.60 \ (m) \\ .88 - 1.92 \ (m) \\ - 4.67 \ (m) \\ (\text{br. } d, J = 9.9) \end{array}$ $(d, J = 5.1) \\ (\text{br. } s) \end{array}$	36.7 (<i>t</i>) 29.7 (<i>t</i>) 73.0 (<i>d</i>) 37.9 (<i>t</i>) 145.4 (<i>s</i>) 124.6 (<i>d</i>)	$\begin{array}{c} H-C(17) \\ Me(18) \\ Me(19) \\ H-C(20) \\ Me(21) \\ H-C(22) \\ CH_2(23) \end{array}$	$\begin{array}{c} 1.14-1.18 \ (m) \\ 0.70 \ (s) \\ 1.00 \ (s) \\ 1.68-1.72 \ (m) \\ 0.92 \ (d, J=6.9) \\ 3.70 \ (br. \ d, J=9.9) \\ a: \ 1.02-1.08 \ (m) \end{array}$	52.8 (d) $11.6 (q)$ $18.2 (q)$ $42.5 (d)$ $12.3 (q)$ $71.2 (d)$ $29.7 (t)$
82-1.89 (m) 52-1.60 (m) 88-1.92 (m) -4.67 (m) (br. d, J=9.9) (d, J=5.1) (br. s)	29.7 (t) 73.0 (d) 37.9 (t) 145.4 (s) 124.6 (d)	Me(18) Me(19) H-C(20) Me(21) H-C(22) CH2(23)	0.70 (s) 1.00 (s) 1.68–1.72 (m) 0.92 (d, J=6.9) 3.70 (br. d, J=9.9) a: 1.02–1.08 (m)	11.6 (q) 18.2 (q) 42.5 (d) 12.3 (q) 71.2 (d) 29.7 (t)
52-1.60 (m) .88-1.92 (m) -4.67 (m) (br. d, J = 9.9) (d, J = 5.1) (br. s)	29.7 (<i>t</i>) 73.0 (<i>d</i>) 37.9 (<i>t</i>) 145.4 (<i>s</i>) 124.6 (<i>d</i>)		1.00 (s) 1.68 - 1.72 (m) 0.92 (d, $J = 6.9$) 3.70 (br. d, $J = 9.9$) a: 1.02 - 1.08 (m)	18.2 (q) 42.5 (d) 12.3 (q) 71.2 (d) 29.7 (t)
(4, J = 5.1) $(br. d, J = 5.1)$ $(br. s)$	29.7 (<i>t</i>) 73.0 (<i>d</i>) 37.9 (<i>t</i>) 145.4 (<i>s</i>) 124.6 (<i>d</i>)	H-C(20) Me(21) H-C(22) CH ₂ (23)	$\begin{array}{l} 1.68 - 1.72 \ (m) \\ 0.92 \ (d, J = 6.9) \\ 3.70 \ (br. \ d, J = 9.9) \\ a: \ 1.02 - 1.08 \ (m) \end{array}$	42.5 (d) 12.3 (q) 71.2 (d) 29.7 (t)
-4.67 (m) (br. d, J = 9.9) (d, J = 5.1) (br. s)	73.0 (<i>d</i>) 37.9 (<i>t</i>) 145.4 (<i>s</i>) 124.6 (<i>d</i>)	Me(21) H-C(22) CH ₂ (23)	0.92 (<i>d</i> , <i>J</i> = 6.9) 3.70 (br. <i>d</i> , <i>J</i> = 9.9) a: 1.02 - 1.08 (<i>m</i>)	12.3 (q) 71.2 (d) 29.7 (t)
(br. $d, J = 9.9$) ($d, J = 5.1$) (br. s)	37.9 (<i>t</i>) 145.4 (<i>s</i>) 124.6 (<i>d</i>)	H-C(22) CH ₂ (23)	3.70 (br. $d, J = 9.9$) a: 1.02 - 1.08 (m)	71.2(d) 29.7(t)
(d, J = 5.1) (br. s)	145.4 (s) 124.6 (d)	CH ₂ (23)	a: 1.02-1.08 (m)	29.7(t)
(d, J = 5.1) (br. s)	124.6(d)			
(br. <i>s</i>)			b: 1.21–1.28 (<i>m</i>)	
	65.2(d)	H - C(24)	1.26 - 1.30 (m)	41.4(d)
-1.30(m)	37.5 (d)	H-C(25)	1.72 - 1.80 (m)	28.6(d)
-1.46(m)	42.4(d)	Me(26)	0.87 (d, J = 7.2)	17.5(q)
	37.5(s)	Me(27)	0.77 (d, J = 7.2)	20.6(q)
20 - 1.28 (m)	24.3 (t)	CH ₂ (28)	a: 1.00-1.08 (m)	23.6 (t)
.98 - 2.02 (m)			b: 1.20–1.29 (<i>m</i>)	
15 - 1.20 (m)	39.1 (t)	Me(29)	0.88 (t, J = 7.0)	11.9(q)
.92 - 2.00 (m)		C(1')		173.2 (s)
	42.5(s)	$CH_{2}(2')$	2.26(t, J = 7.3)	34.6 (t)
-1.66(m)	49.0 (d)	CH ₂ (3')	1.56 - 1.63 (m)	25.0 (t)
18 - 1.22 (m)	20.6 (t)	$CH_2(4'-11')$	1.25 (br. s)	29.1-29.7 ^b) (t)
.82 - 1.88 (m)		CH ₂ (12')	1.25 (br. s)	31.9 (<i>t</i>)
26 - 1.30 (m)	27.5 (t)	CH ₂ (13')	1.25 (br. s)	22.7 (t)
.60 - 1.66 (m)		Me(14')	0.85(t, J = 7.2)	14.1 (q)
	-1.46 (m) 20-1.28 (m) 98-2.02 (m) 15-1.20 (m) 92-2.00 (m) -1.66 (m) 18-1.22 (m) 82-1.88 (m) 26-1.30 (m) 60-1.66 (m)	$\begin{array}{cccc} -1.46 \ (m) & 42.4 \ (d) \\ & 37.5 \ (s) \\ 20 - 1.28 \ (m) & 24.3 \ (t) \\ 98 - 2.02 \ (m) & \\ 15 - 1.20 \ (m) & 39.1 \ (t) \\ 92 - 2.00 \ (m) & \\ & 42.5 \ (s) \\ -1.66 \ (m) & 49.0 \ (d) \\ 18 - 1.22 \ (m) & 20.6 \ (t) \\ 82 - 1.88 \ (m) & \\ 26 - 1.30 \ (m) & 27.5 \ (t) \\ 60 - 1.66 \ (m) & \\ \end{array}$	$\begin{array}{cccc} -1.46 \ (m) & 42.4 \ (d) & Me(26) \\ & 37.5 \ (s) & Me(27) \\ 20 - 1.28 \ (m) & 24.3 \ (t) & CH_2(28) \\ 98 - 2.02 \ (m) & & & \\ 15 - 1.20 \ (m) & 39.1 \ (t) & Me(29) \\ 92 - 2.00 \ (m) & & C(1') \\ & & 42.5 \ (s) & CH_2(2') \\ -1.66 \ (m) & 49.0 \ (d) & CH_2(3') \\ 18 - 1.22 \ (m) & 20.6 \ (t) & CH_2(4' - 11') \\ 82 - 1.88 \ (m) & & CH_2(12') \\ 26 - 1.30 \ (m) & 27.5 \ (t) & CH_2(13') \\ 60 - 1.66 \ (m) & Me(14') \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

124.6 (*d*), 145.4 (*s*)), one ester CO group (δ (C) 173.2 (*s*)), and some aliphatic C-atoms (δ (C) 34.6 (*t*), 25.0 (*t*), 29.1–29.7 (*t*), 31.9 (*t*), 22.7 (*t*), 14.1 (*q*)). Furthermore, comparison of the ¹H- and ¹³C-NMR data of **2** with stigmast-5-ene-3 β ,7 α ,22 α -triol reported in literature [16], showed that they both are very similar, except that a fatty acid moiety appeared in **2**. Compared with those of stigmast-5-ene-3 β ,7 α ,22 α -triol, the signals of H–C(3) and C(3) in **2** were both shifted downfield (δ (H): from 3.59 to 4.63 – 4.67; δ (C): from 71.3 (*d*) to 73.0 (*d*)). This suggested that the fatty acid moiety was attached at C(3). In the HMBC experiment, a correlation between CH₂(2') with C(3) was observed, and this further confirmed that the fatty acid was linked at C(3) position by an ester bond. The HR-ESI-MS showed a peak at *m*/*z* 411.3612 ([*M* – C₁₄H₂₈O₂ – H₂O + H]⁺; calc. 411.3621), and the EI-MS spectrum showed fragment peaks at *m*/*z* 429 ([*M* – C₁₄H₂₇O₂]⁺) and 229 ([C₁₄H₂₉O₂]⁺), which indicated that the fatty acid moiety acid moiety acid moiety contains 14 C-atoms. Hence, the structure of **2** was assigned as stigmast-5-ene- π ,22 α -diol-3 β -tetradecanoate¹).

Compound 3 was obtained as an amorphous white powder. Its molecular formula was determined as $C_{17}H_{18}O_9$ from the HR-ESI-MS signal at 384.1297 ($[M + NH_4]^+$; calc. 384.1289). The IR (KBr) spectrum showed the absorption bands of an OH group (3422.7 cm⁻¹), a CO group (1735.5 cm⁻¹), and an aromatic moiety (1620.6 and 1510.7 cm⁻¹). The ¹³C-NMR (DEPT) and ¹H-NMR spectra showed the presence of a CO signal at δ (C) 170.9 (s) and five typical H-atoms of a coumarin skeleton (6.30 (d, J = 9.3, H-C(3), 8.00 (d, J = 9.3, H-C(4)), 7.63 (d, J = 8.5, H-C(5)), 6.96 (d, J = 6.5, H-C(5)), 7.96 (d, J = 6.5, H-C(5)8.5, H-C(6)), 7.02 (s, H-C(8)) [6], a signal for an AcO group, and glucosyl signals (Table 3). From the above information, compound 3 was deduced as a coumarin glucoside. The signal of the anomeric H-atom of glucosyl at $\delta(H)$ 5.07 (d, J = 7.2) indicated that the glucosyl moiety was bound in β -configuration. By comparison with the NMR data reported in literature, the sugar moiety was identified as D-glucose [17]. The HMBC experiment showed a correlation between the anomeric H-atom H-C(1')at $\delta(H)$ 5.07 of the glucosyl moiety and C(7) at $\delta(C)$ 160.6 (s) of the coumarin skeleton, which suggested that the glucosyl moiety was located at C(7). The correlations between the CO group of AcO at $\delta(C)$ 170.9 and CH₂(6') at $\delta(H)$ 4.26 and 4.00-4.06 of the glucosyl moiety, inferred that the AcO group was linked at C(6'). Meanwhile, the signals for C(6') (δ (C) 64.0 (t)) and C(5') (δ (C) 74.4 (d)) were shifted downfield and upfield, respectively [18] due to the influence of the AcO group. This further confirmed the position of the AcO group. From the above evidences, the structure of 3 was elucidated as 7-O-(6'-acetoxy- β -D-glucopyranosyl)coumarin¹).

Compound **4** was isolated as a yellowish gum. Its molecular formula $C_{17}H_{18}O_{10}$ was determined on the basis of the pseudomolecular-ion peak at m/z 405.0792 ($[M + Na]^+$; calc. 405.0792) in the HR-ESI-MS. The IR (KBr) spectrum showed the absorption bands of OH groups (3423.8 cm⁻¹), CO groups (1723.7 cm⁻¹), and an aromatic moiety (1613.6 and 1506.2 cm⁻¹). The ¹³C-NMR (DEPT) spectra of **3** and **4** were similar, except for the signals of C(7), C(8), and C(9) (*Table 3*). The signals of two oxygenated aromatic C-atoms at $\delta(C)$ 153.9 (*s*) and 132.1 (*s*) indicated a 7,8-disubstituted coumarin, which was confirmed by the disappearance of the signal at $\delta(H)$ 7.02 for H–C(8) of **3** in the ¹H-NMR spectrum. In the HMBC experiment, correlations were observed between the anomeric H-atom H–C(1') at $\delta(H)$ 4.86 of the glucosyl moiety and C(8) at $\delta(C)$ 132.1 (*s*) of the coumarin skeleton, which suggested that the glucosyl moiety was

	$3 \delta(\mathrm{H})^{\mathrm{a}})$	$4 \delta(H)^{a}$	$4 \delta(H)^{b}$	$\delta(C)^{a}$	$4 \delta(C)^{b}$
C(2)				160.9 (s)	160.0 (s)
H-C(3)	6.30 (d, J = 9.3)	6.06 (d, J = 9.3)	6.20 (d, J = 9.5)	113.9 (d)	112.5(d)
H-C(4)	8.00 (d, J = 9.3)	7.83 (d, J = 9.3)	7.88 (d, J = 9.5)	144.9 (d)	144.4(d)
H-C(5)	7.63 (d, J = 8.5)	7.20 (d, J = 8.7)	6.88(d, J = 8.7)	130.1(d)	125.1(d)
H-C(6)	6.96 (d, J = 8.5)	6.72 (d, J = 8.7)	7.35 (d, J = 8.7)	114.3 (d)	113.5(d)
C(7)				160.6 (s)	153.9 (s)
H-C(8)	7.02(s)	-	-	103.8(d)	132.1(s)
C(9)				155.7 (s)	148.5(s)
C(10)				114.0(s)	112.9 (s)
H-C(1')	5.07 (d, J = 7.2)	4.80 (d, J = 7.8)	4.86 (d, J = 7.5)	100.2(d)	105.9(d)
H-C(2')	3.20 - 3.25(m)	3.22 - 3.26 (m)	3.59 - 3.61 (m)	73.7 (d)	74.2(d)
H-C(3')	3.25 - 3.30 (m)	$3.17 - 3.20 \ (m)^{\circ}$	3.51 - 3.58(m)	77.0(d)	76.5(d)
H-C(4')	3.12 - 3.20 (m)	$3.17 - 3.20 \ (m)^{\circ}$	3.43 (dd, J = 8.7, 9.9)	70.4(d)	70.5(d)
H-C(5')	3.68 - 3.72 (m)	3.27 - 3.30 (m)	3.64 - 3.67 (m)	74.4(d)	74.7(d)
CH ₂ (6')	4.26 (d, J = 11.7)	4.10 (<i>m</i>)	4.22 (dd, J = 11.7, 6.6)	64.0(t)	63.6 (<i>t</i>)
2.	4.00 - 4.06 (m)		4.32 (dd, J = 11.7, 2.1)		
C(7′)				170.9(s)	170.5(s)
Me(8')	2.00(s)	1.86(s)	1.97(s)	21.3(q)	20.0(q)
OH-C(2')	5.48 (d, J = 4.8)			(1)	
OH - C(3')	5.24(d, J = 4.5)				
OH-C(4')	5.33 (d, J = 5.4)				

Table 3. ¹H- and ¹³C-NMR (DEPT) Data of **3** and **4**¹) (δ in ppm, J in Hz)

located at C(8). The correlations between CH₂(6') (δ (H) 4.22 and 4.32) of the glucosyl moiety and the CO group of AcO (δ (C) 170.5, *s*) suggested that the AcO group was located at C(6') of the glucosyl moiety. From the above information, the OH group was unambiguously located at C(7) (δ (C) 153.9, *s*). Thus, the structure of **4** was elucidated as 8-*O*-(6'-acetoxy- β -D-glucopyranosyl)-7-hydroxycoumarin¹).

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh, Qingdao Marine Chemical Factory, China). TLC and prep. TLC (PTLC): SiO₂ GF_{254} (10–40 µm, Qingdao Marine Chemical Factory), detection at 254 nm UV light or by heating after spraying with 5% H₂SO₄ in EtOH (ν/ν). Melting points: Kofler melting point apparatus, uncorrected. Optical rotations: Perkin-Elmer 341 polarimeter. UV Spectra: Shimadzu spectrometer UV-260, λ_{max} (log ε), in nm. IR Spectra: Nicolet NEXUS-670 FT-IR spectrometer, in cm⁻¹. NMR Spectra: Varian Mercury plus-300 spectrometer at 300 (¹H-NMR) and 75 MHz (¹³C-NMR), δ in ppm, J in Hz. EI-MS: HP 5988A GC/MS instrument, in m/z. HR-ESI-MS: Bruker Daltonics APEX-II mass spectrometer.

Plant Material. The whole plant of *Sinacalia tangutica* was collected in Linxia City of Gansu Province, China, in August 2005 and identified by Prof. *Guo-Liang Zhang*, Department of Life Science, Lanzhou University. A voucher specimen (No. St20050801) has been deposited with the State Key Laboratory of Applied Organic Chemistry, Lanzhou University.

Extraction and Isolation. Air-dried of the aerial parts of *S. tangutica* (6.0 kg) were powdered and extracted with MeOH for five times (7 d each time) at r.t. The residue (790 g) was obtained after removing the solvent under reduced pressure. The residue was suspended in H_2O and partitioned with

CHCl₃, AcOEt, and BuOH, resp. The CHCl₃-soluble extract was concentrated to give a dark green viscous residue (145 g). This residue was subjected to CC (SiO₂; 1849 g) with gradient elution, with petroleum ether (PE; $60-90^{\circ}$)/acetone, and finally washing with MeOH. *Fr. 3* (30:1, 10 g) was further subjected to CC (SiO₂), eluting with PE/CHCl₃ (1:1), and further purified by PTLC (cyclohexane/AcOEt 3:1): **13** (5 mg). *Fr. 4* (20:1, 3.5 g) was purified by CC (SiO₂) with PE/acetone (20:1) and PE/AcOEt (10:1) successively: **9** (4 mg). *Fr. 5* (15:1, 2 g) was purified by repeated CC (SiO₂) with PE/AcOEt (10:1), PE/CHCl₃ (1:1), CHCl₃/AcOEt (15:1), and CHCl₃/acetone (15:1), successively: **1** (9 mg), **2** (5 mg, recrystallized from CHCl₃), **5** (2 mg), **11** (12 mg). *Fr. 6* (10:1, 2 g) was separated by CC (SiO₂) with CHCl₃/acetone (15:1) and CHCl₃/AcOEt (8:1) successively: **6** (10 mg), **8** (20 mg, recrystallized from CHCl₃), and **12** (6 mg). *Fr. 7* (5:1, 10 g) was purified by CC (SiO₂) with CHCl₃/AcOEt (5:1), PE/AcOEt (2:1), and PE/acetone (2:1), successively: **7** (3 mg) and **14** (4 mg). *Fr. 8* (3:1, 8 g) was purified by CC (SiO₂) with PE/AcOEt (1:1): **10** (12 mg).

The AcOEt-soluble part (45 g) was subjected to CC (SiO₂; 845 g), eluting sequentially with CHCl₃/MeOH (30:1-0:1): **3** (7 mg). Further purification by PTLC (CHCl₃/MeOH/H₂O 10:1:0.05) led to the isolation of **4** (4 mg).

 $\begin{array}{ll} 9\alpha - Hydroxy - 1\beta - methoxy caryolanol & (=(1R,2S,5R,8S,9R) - 1 - Methoxy - 4,4,8 - trimethyltricyclo- [6.3.1.0^{2.5}] dodecan - 9 - ol; 1). Colorless crystals. M.p. 94 - 95° (acetone). [<math>\alpha$]_D²⁰ = +20 (c = 0.113, CHCl₃). IR (film): 3369.5, 2930.3, 2853.9, 1600.0, 1458.0, 1210.8. ¹H- and ¹³C-NMR (DEPT): *Table 1*. EI-MS: 252 (1, *M*⁺), 220 (3, [*M* - MeOH]⁺), 193 (71), 141 (100), 123 (42). HR-ESI-MS: 270.2431 ([*M* + NH₄]⁺, C₁₆N₃₂NO₂⁺; calc. 270.2428). \end{array}

 $\begin{array}{l} Stigmast-5-ene-7a,22a-diol-3\beta-tetradecanoate ~(=(3\beta,7a,22R)-7,22-Dihydroxystigmast-5-ene-3-yl~Tetradecanoate; {\bf 2}). \\ Colorless villiform crystal. M.p. 99-100° (acetone). <math>[a]_{D}^{20} = -35~(c=0.233, CHCl_3). \\ IR (film): 3407.3, 2925.1, 2855.3, 1733.4, 1640.1, 1461.3, 1024.0. ^{1}H- and ^{13}C-NMR: Table 2. EI-MS: 429 (0.5, <math>[M-C_{14}H_{27}O_2]^+), 229~(1.6, [C_{14}H_{29}O_2]^+), 155~(11, [C_{11}H_{23}]^+), 157~(3.6, [C_{10}H_{21}O]^+), 141~(13, [C_{10}H_{21}]^+), 127~(19, [C_{9}H_{19}]^+), 113~(19, [C_{8}H_{17}]^+), 99~(26, [C_{7}H_{15}]^+), 85~(51, [C_{6}H_{13}]^+), 71~(65, [C_{5}H_{11}]^+), 57~(100, [C_{4}H_{9}]^+), 43~(75, [C_{3}H_{7}]^+). \\ HR-ESI-MS: 679.5646~([M+Na]^+, C_{43}H_{76}NaO_{4}^+; calc. 679.5636), 411.3612~([C_{29}H_{46}O+H]^+; calc. 411.3621). \\ \end{array}$

7-O-(6'-Acetoxy-β-D-glucopyranosyl)coumarin (=2-Oxo-2H-chromen-7-yl 6-O-Acetyl-β-D-glucopyranoside; **3**). Amorphous white powder. $[a]_D^{20} = -125$ (c = 0.14, MeOH). UV (MeOH): 212 (1.65), 316 (1.22). IR (KBr): 3422.7, 2922.3, 1735.5, 1620.6, 1510.7, 1077.2, 1041.4, 609.9. ¹H- and ¹³C-NMR: *Table 3*. EI-MS: 366 (0.23, M^+), 205 (13.6, $[C_8H_{13}O_6]^+$), 162 (100, $[C_8H_{13}O_6 - MeCO]^+$), 43 (58, $[MeCO]^+$). HR-ESI-MS: 384.1297 ($[M + NH_4]^+$, $C_{17}H_{22}NO_9^+$; calc. 384.1289).

8-O-(6'-Acetoxy-β-D-glucopyranosyl)-7-hydroxycoumarin (=7-Hydroxy-2-oxo-2H-chromen-8-yl 6-O-Acetyl-β-D-glucopyranoside; **4**): Yellowish gum. $[a]_D^{20} = -40$ (c = 0.05, MeOH). UV (MeOH): 227 (3.67), 321 (2.81). IR (KBr): 3423.8, 2932.9, 1723.7, 1613.6, 1506.2, 1075.9, 620.5. ¹H- and ¹³C-NMR: *Table 3*. EI-MS: 382 (0.6, M^+), 205 (4, $[C_8H_{13}O_6]^+$), 162 (3, $[C_8H_{13}O_6 - MeCO]^+$), 144 (4, $[C_9H_4O_2]^+$), 43 (83, $[MeCO]^+$). HR-ESI-MS: 405.0792 ($[M + Na]^+$, $C_{17}H_{18}NaO_{10}^+$; calc. 405.0792).

The authors express their gratitude to the *Natural Science Foundation of Gansu Province* (No. ZS001-A25-002-Z), the *Natural Science Foundation of China* (NSFC) (No. J0630962/J0109) and the grant from the *State Key Laboratory of Applied Organic Chemistry at Lanzhou University*.

REFERENCES

- 'A Dictionary of the Traditional Chinese Medicines', Jiangsu College of New Medicine, Shanghai Science and Technology Press, Shanghai, 1977, p. 549.
- [2] M.-J. Mao, J.-L. Qian, B. Jiang, Chin. Chem. Lett. 2005, 16, 1056.
- [3] X. Liu, Q.-X. Wu, Y.-P. Shi, J. Chin. Chem. Soc. 2005, 52, 369.
- [4] Z.-L. Liu, X. Tian, Bull. Korean. Chem. Soc. 2004, 25, 1078.
- [5] J.-M. Yue, S.-N. Chen, Z.-W. Lin, H.-D. Sun, Phytochemistry 2001, 56, 801.
- [6] A. Chatterjee, S. Sarkar, J. N. Shoolery, *Phytochemistry* 1980, 19, 2219.
- [7] S. P. Gunasekera, G. A. Cordell, N. R. Farnsworth, J. Nat. Prod. 1980, 43, 285.
- [8] T. Kinoshita, K. Firman, Chem. Pharm. Bull. 1996, 44, 1261.

- [9] A. A. Ahmed, M.-E. F. Hegazy, N. M. Hassan, M. Wojcinska, J. Karchesy, P. W. Pare, T. J. Mabry, *Phytochemistry* 2006, 67, 1547.
- [10] J. F. Sanz, J. A. Marco, Phytochemistry 1991, 30, 2788.
- [11] M. Neuenschwander, A. Neuenschwander, E. Steinegger, Helv. Chim. Acta 1979, 62, 627.
- [12] J. Kitajima, K. Kimizuka, Y. Tanaka, Chem. Pharm. Bull. 2000, 48, 77.
- [13] I. G. Collado, J. R. Hanson, A. J. Macías-Sánchez, Tetrahedron 1996, 52, 7961.
- [14] W. R. Abraham, L. Ernst, H. A. Arfmann, Phytochemistry 1990, 29, 757.
- [15] E.-W. Li, K. Gao, Z.-J. Jia, Chin. Chem. Lett. 2004, 15, 194.
- [16] Y. Li, M. Ishibashi, M. Satake, X. Chen, Y. Oshima, Y. Ohizumi, J. Nat. Prod. 2003, 66, 696.
- [17] R.-Q. Mei, Q. Lu, Y.-F. Hu, H.-Y. Liu, F.-K. Bao, Y. Zhang, Y.-X. Cheng, *Helv. Chim. Acta* 2008, 91, 90.
- [18] C. Bertrand, N. Fabre, C. Moulis, Fitoterapia 2004, 75, 242.

Received April 8, 2008